Question 6

- 6. In each pair of ionic compounds, which is more likely to have the more negative enthalpy of hydration?
 - A) LiCl or CsCl
 - B) NaNO₃ or Mg(NO₃)₂
 - C) Ni(NO₃)₂ or RbCl

Answer:

A) LiCl or CsCl

The Li⁺ cation is much smaller than the Cs⁺ cation, therefore, the ion-dipole interactions between Li⁺ and water will be stronger as compared to the ion-dipole interaction between Cs⁺ and water. As a result, the interaction of LiCl with water will release more heat. Therefore, **LiCl will have more negative enthalpy of hydration**

B) NaNO₃ or Mg(NO₃)₂

The Mg^{2+} cation has a larger charge (+2 as compared to +1 in Na^+) and is smaller than the Na^+ cation, therefore, the ion-dipole interactions between Mg^{2+} and water are significantly stronger than those between Na^+ and water. Therefore, $Mg(NO_3)_2$ will have more negative enthalpy of hydration.

C) Ni(NO₃)₂ or RbCl

The Ni²⁺ cation has a larger charge (+2 as compared to +1 in Rb+) and is smaller than the Rb⁺ cation, therefore, the ion-dipole interactions between Ni²⁺ and water are significantly stronger than those between Rb⁺ and water. Therefore, Ni(NO₃)₂ will have more negative enthalpy of hydration.